

DDSU256 型单相电子式

电能表 (导轨)

短周照明铅

安装使用产品前,请阅读使用说明书

浙江天正电气股份有限公司

一、 产品概述

DDSU256 型单相电子式电能表 (导轨),该电能表采用 DIN35mm 导轨式安装结构,是采用 先进的低功耗集成电路技术和 SMT 工艺设计制造的一款全新的微型单相电能表,体积小巧,安装方便,可轻松放入各类配电箱和配电柜,可集成工业通信接口,可轻松实现与各种智能配电系统的集成,极大地方便了能效管理。其性能指标符合 GB/T 17215.321-2021 《电测量设备(交流)特殊要求 第 21 部分:静止式有功电能表 (A 级、B 级、C 级、D 级和 E 级)》国家标准的要求。导轨式安装电能表由于其微型化的结构,可方便其与微型断路器一起使用,安装于终端照明箱内,为低压终端的电能计量提供了有效的解决方案。可广泛应用于楼宇、商场、会展中心、学校、机场、港口及工厂等。

二、工作原理

主要由电压、电流采样电路、专用电能计量芯片,CPU 及 LCD 显示等部分组成。电能表将采样的电压、电流信号输入到专用电能计量芯片,并由 LCD 显示电能,可通过 RS485 接口实现远距离抄录表内电能等数据。

三、型号和规格(以铭牌上的技术参数为准)

型号	准确度等级	标称电 压	规格	仪表常数
DDSU256	A级(2级)、	220V	0. 015-0. 075 (6) A/1. 5 (6) A	6400imp/kWh
טטטעע טטטעט	B级(1级)	ZZUV	0. 25-0. 5 (80) A/5 (80) A	800imp/kWh

四、主要技术参数

4.1 基本误差见下表:

电流	功率因数	最大允许误差		
		A 级	B 级	
$I_{\rm tr} \leq I \leqslant I_{\rm max}$	1.0	±2.0	±1.0	
	0. 5L	±2.0	±1.0	
$I_{min} \leqslant I < I_{tr}$	1.0	±2.5	±1.5	
	0. 5L	±2.5	±1.5	
$I_{st} \leqslant I < I_{min}$	1. 0	±2.5* I _{min} /I	$\pm 1.5*~\mathrm{I}_{\scriptscriptstyle\mathrm{min}}/\mathrm{I}$	

4.2 起动

电能表在标称电压、标称频率及 $COS \phi = 1$ 的条件下, 直接接入和经互感器接入仪表当负载电流为 $0.04I_{,r}$ (B级)、 $0.05I_{,r}$ (A级)时,电能表应能连续计量电能。

4.3 潜动

当电压回路施加 110%标称电压,电流回路断开时,不产生多于一个电能脉冲输出。

4.4 电气参数

正常工作电压: 0.9~1.1 标称电压

极限工作电压: 0.8~1.15 标称电压

电压线路功率消耗: ≤ 2 W 和 10VA

4.5 温度范围和环境等级

规定的工作范围(室内): -10℃~55℃。

极限的工作范围(室内): -25℃~70℃。

存储和运输条件: -40℃~70℃。

环境等级: H1(仪表不经受凝露、积水或结冰的封闭场所)

五、主要功能

- 5.1 总有功电能计量功能,具有正、反双方向计量功能,并以同一方向累计电能,即反向电能计 入正向。
 - 5.2 液晶显示 6 位整数加 1 位小数用电量。

- 5.3 具有脉冲指示灯,以及校表脉冲输出(选配)。
- 5. 4 电能表具有 RS485 通信功能(选配)。通讯规约可选 DL/T 645—2007、Modbus 协议(Modbus 寄存器定义见附件)。
 - 5.5 DL/T645—2007 协议的通讯波特率默认为 2400bps, Modbus 协议的波特率默认为 9600bps。
 - 5.6 电能表具备多费率功能,可计尖峰平谷电量(选配)。
- 5. 7 当电量小于 99999. 99 时,电量显示为 2 位小数,当电量大于等于 100000. 0,电量显示为 1 位小数。

六、通信协议设置

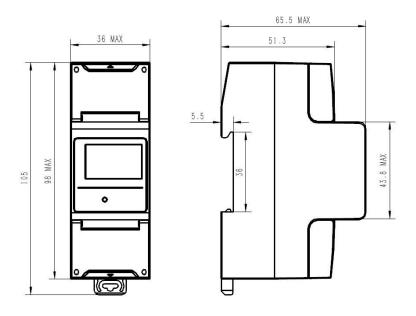
通信协议可以在 Modbus 和 DL/T645—2007 之间进行切换。切换协议可以用按键进行设置或者采用发送命令的方式进行。按键设置方法如 6.1 至 6.3 所示。

- 6.1 长按按键 3 秒,当界面显示"表号 ID XXX"(XXX 为 ID 值)时松开按键,进入 Modbus ID 设置界面。然后按下按键调整 ID 号,ID 号可设置范围为 1-32。设置完成等待 6 秒后自动退出设置界面。
- 6.2 长按按钮 6 秒, 当界面显示"t xxxx"(xxxx 为波特率值)时松开按键,进入切换波特率设置界面。按下按键调整波特率,可在 1200、2400、4800、9600 之间进行波特率设置。设置完成等待 6 秒后自动退出设置界面。
- 6.3 长按按钮 9 秒,当界面显示"Modbus"或"DLT645"时松开按键,进入切换通信协议界面。当界面显示"DLT645"时,表面当前处于 DL/T645—2007 协议状态。当界面显示"Modbus"时,表面当前处于 Modbus 协议。按下按键,可以切换 DL/T645—2007 协议和 Modbus 协议。当切换到 DL/T645—2007 协议时,波特率自动设置成 2400bps,当设置成 Modbus 协议时,波特率自动切换成 9600bps。设置完成等待 6 秒后自动退出设置界面。
 - 6.4 通信协议的切换也可以采用通信命令的方式进行修改,切换命令如6.5 至6.6 所示。
- 6.5 当前协议为 DL/T645—2007 时, 切换成 Modbus, 用 DL/T645—2007 通信协议写命令 14H 发送切换命令, 其中数据标志 DI3、DI2、DI1、DI0 = 04 b0 00 02。协议代码数据长度 1 个字节, 其中 0 表示 DL/T645—2007, 1 表示 Modbus 协议。

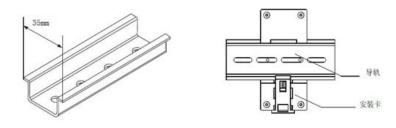
命令格式如下: 68H AO A1 A2 A3 A4 A4 A5 68H 14H L DIO DI1 DI2 DI3 PA PO P1 P2 CO C1 C2 C3 N1 CS 16H

其中 DIO-DI3 为数据标志, PO-P2 为用户密码, CO-C3 为操作者代码, N1 为协议代码, CS 为校验码。

6.6 当前协议为 Modbus 时,切换成 DL/T645—2007 时,用 Modbus 通信协议先发送编程命令,然后发送切换协议命令,具体通信命令参考附件 《MODBUS-RTU 通讯抄表应用(通讯协议)及寄存器地址》。

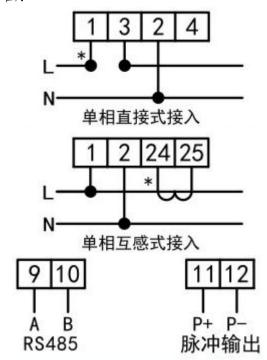

七、显示说明

7.1 液晶符号注释(实际显示符号以最终产品为准)


显示符号	注释	显示符号	注释
一点	总电量为		功率因数 1.000
电量 KVVAh	1.02kWh	PF 1000	
+ 0	通信地址高6位		电网频率 50.00Hz
¥		F 50.00	

	T		T .
表号	通信地址低6位	22.08. IS	日期 22 年 8 月 15 日
td	Modbus 的 ID 号 为 001	时间 10:08:33	时间 10 点 8 分 33 秒
£ 2400	RS485 通信波特 率为 2400	4=	电流反向标志
U 220.0	电压 220.0V	8	电池欠压提醒
1 5.000°	电流 5.000A	vo ap n 2	当前为 Modbus 协议
P 1, 1000	功率 1.1kWh	dL	当前为 DL/T 645—2007 协议
•	通讯符号		

八、**外形与接线图** 8.1 外形图



8.2. 导轨式安装单相电子式电能表采用 35mm 标准导轨式安装方式,如下图:

8.3 接线图

按照电能表表壳上的接线图正确接线,典型接线如图所示(注:实际主接线图和功能端子接线图以表外壳上的接线图为准):

- 8.4 仪表在出厂前经检验合格并加铅封。用户安装使用前,要检查合格标志以及铅封完好的前提下方可安装使用。对无铅封或贮存期过久的仪表,应请有关部门重新检验,合格的方可安装使用。
- 8.5 仪表应安装在室内通风干燥的地方,底座应固定在坚固、耐火、不震动的物体上。安装高度为 1.8m 左右,确保安装使用安全可靠。在有污秽或可能损坏仪表的场所,仪表应用保护柜保护。仪表应按接线图正确接线,接线端钮盒的引入线建议使用铜线或铜接头,端钮盒内螺钉应拧紧,避免因接触不良发热而引起烧毁。
 - 8.6 仪表在使用中如发现有异常现象,不能私自拆卸,应请有资格的专业人员进行处理。

九、运输与贮存

- 9.1 仪表必须在原包装条件下进行运输和贮存。仪表应尽可能安装在室内,室外安装时必须采用专用的仪表箱保护。贮存的环境中不得有腐蚀性气体存在,存放高度不得超过五层。
- 9.2 电能表运输与拆封不应受到剧烈冲击,要采用运输精密仪器的措施,并根据 GB/T 13384—2008《机电产品包装通用技术条件》的规定运输和贮存。

十、保证日期

自出厂之日起24个月内,在用户遵守说明书规定要求,并在制造厂铅封完整的条件下,发现电表不符合企业标准所规定的要求时,制造厂给予免费修理或更换。

附件: MODBUS-RTU 通讯抄表应用(通讯协议)及寄存器地址

本电能表能通过其 RS485 接口实现远距离抄录表内电能等数据。并能通过 其远红外通讯接口用掌上电脑实现近距离抄录表内电能数据。编码格式、校验 (无校验)和数据传输方式(八个数据位,一个停止位)符合 MODBUS-RTU 标准 要求。通讯波特率可设置为 1200bps, 2400bps、4800bps、9600bps(默认)可 选。如没有特殊要求,仪表出厂都是按照 9600bps 的默认波特率来设置的,可 以通过我们提供的软件来修改表地址以及通讯速率。

MODBUS-RTU 通讯协议描述:

1、数据格式:

地址 + 功能码 + 数据 + CRC 校验码

2、寄存器类型

本表使用了两种类型的寄存器。

第一类是只读寄存器,只能读,使用命令码 0x03 来读取。

第二类是读写寄存器,可读可写,使用命令码 0x03 读取,使用 0x10 写参数。

3、数据格式

所有数据都为无符号类型。

4、数据寄存器列表

序	-E D A 14	寄存器地址	寄存器个数	读写	状态	4.1
号	项目名称	(HEX 型)	(HEX 型)	读	写	格式
1	当前组合有	0000	0002	*		VVVVVV VV LIVI.
	功总电量	0001		*		XXXXXX.XX kWh
2	当前组合有	0002	0002	*		XXXXXX,XX kWh
	功尖电量	0003	0002	·		AAAAAA.AA KWII
3	当前组合有	0004	0002	*		XXXXXX.XX kWh
	功峰电量	0005				AAAAAA,AA KWII
4	当前组合有	0006	0002	*		XXXXXX,XX kWh
	功平电量	0007				AAAAAAAAAA KWII
5	当前组合有	0008	0002	*		XXXXXX.XX kWh
	功谷电量	0009				777777777777
6	当前组合反	0014	0002			
	向总有功电	0015		*		XXXXXX.XX kWh
	量					
7	上1月组合有	00CB	0002	*		XXXXXX.XX kWh
	功总电量	00CC				
8	上1月组合有	00CD	0002	*		XXXXXX.XX kWh
	功尖电量	00CE				
9	上1月组合有	00CF	0002	*		XXXXXX.XX kWh
	功峰电量	00D0				
10	上1月组合有	00D1	0002	*		XXXXXX.XX kWh
	功平电量	00D2	0000			
11	上1月组合有	00D3	0002	*		XXXXXX.XX kWh
10	功谷电量	00D4	0000			
12	上1月组合反	00DF	0002	*		**************************************
	向有功总电	00E0		*		XXXXXX.XX kWh
12	量 ま ID	0025				± IDANAI
13	表 ID	003F (或 000d)	0001			表 ID:NNN 1-247
			0001	*	*	1-24/
		高字节				
14	波特率和奇	003F				低 4 位,波特率
	偶校验位	(或 000d)		*	*	01-9600bps, 02-4800bps
		低字节			"	03-2400bps, 04-1200bps
						高 4 位: 0=无,1=奇,2=偶

15	脉冲常数	0040	0001	*	*	XXXX
16	日期时间	003C	0003			YY-MM-DD
		003D		*	*	hh:mm:ss
		003E				
17	第一时段表	C33F	000C	*	*	hh-mm-NN
18	第二时段表	C34F	000C	*	*	hh-mm-NN
19	抄表日	FE05	0001	*	*	DD-hh
20	A 相电流	0064	0001	*		XX.XX A
21	B相电流	0065	0001	*		XX.XX A
22	C相电流	0066	0001	*		XX.XX A
23	A 相电压	0061	0001	*		XXX.XX V
24	B相电压	0062	0001	*		XXX.XX V
25	C相电压	0063	0001	*		XXX.XX V
26	当前有功总	006A	0001	*		XXX.XX kW
	功率					
27	A 相有功功率	0067	0001	*		XXX.XX kW
28	B相有功功率	0068	0001	*		XXX.XX kW
29	C相有功功率	0069	0001	*		XXX.XX kW
30	总功率因数	0076	0001	*		X.XX
31	A 相功率因数	0073	0001	*		X.XX
32	B相功率因数	0074	0001	*		X.XX
33	C相功率因数	0075	0001	*		X.XX
34	当前有功最	007B	0002	*		XX.XXXX kW
	大需量	007C	0002			
35	当前有功最	007F	0002			MM,DD,HH,SS
	大需量发生	0800		*		
	时间					
36	切换通信协	0041	0001	*	*	0=645, 1=Modbus
	议					

注:对表进行写操作时必须先进入编程使能状态。

进入编程使能数据帧: 00 10 FE 00 00 01 02 00 01 75 CF

退出编程使能数据帧: 00 10 FE 00 00 01 02 00 00 B4 0F

5、举例说明

(1) 寄存器的读操作

读电压:

下发数据(HEX): OF 03 00 61 00 01 D4 FA

数据说明:

数据	详细说明
0F	仪表地址
03	功能码,读数据寄存器
00 61	从仪表内部的 00 61 寄存器地址开始读取数据
00 01	读取数据长度,1个字(2个字节)
D4 FA	为前面数据的 CRC 校验,其中低位在前,高位在后

返回: OF 03 02 5D 22 69 0C

数据说明:

数据	详细说明
0F	仪表地址
03	返回功能码
02	返回的数据长度为2个字节的数据长度
5D 22	返回的数据,为2个字节的无符号数据
69 OC	返回的 CRC 校验

5D22 换算成十进制后,根据"数据寄存器列表"中的"格式"栏所对应项可得,读取的电压值是"238.42 V"。

(2) 寄存器(可读写寄存器)的读操作

读取表地址及波特率:

下发数据(HEX): OF 03 00 3F 00 01 B5 28

数据说明:

数据	详细说明
0F	仪表地址
03	功能码,读参数寄存器

00 3F	从仪表内部的 00 3F 寄存器地址开始读取数据
00 01	读取数据长度,1个字(2个字节)
B5 28	为前面数据的 CRC 校验,其中低位在前,高位在后

返回: OF 03 02 OF 03 94 74

数据说明:

数据	详细说明
0F	仪表地址
03	返回功能码
02	返回的数据长度为 2 个字节的数据长度
0F 03	返回的数据,为2个字节的数据
94 74	返回的 CRC 校验

数据字节的高字节为 0F 换算成十进制后,根据"参数寄存器列表"中的"格式"栏 所对应项可得,读取的表 ID 是"015"。数据字节的低字节为 03 换算成十进制后,根据"参数寄存器列表"中的"格式"栏所对应项可得,读取的表的波特率代号是"03",即 2400bps。

(3) 寄存器(只适用可读写寄存器)的写操作

注意: 写操作前要先发编程使能数据帧。

进入编程使能数据帧: 00 10 FE 00 00 01 02 00 01 75 CF

修改表地址及波特率:

将表 ID 为 015, 波特率为 2400bps 的表设置成表 ID 为 100, 波特率为 9600bps。根据"参数寄存器列表"可知,寄存器地址为 0x003F,寄存器个数为 0001,数据字节为 2 个,数据高字节为 0x64(100 的十六进制),数据的低字节为 0x01(9600bps 所对应的波特率代号的十六进制)。

下发数据(HEX): 0F 10 00 3F 00 01 02 64 01 04 3F

数据说明:

数据	详细说明
OF	仪表地址
10	功能码,写仪表内部寄存器数据
00 3F	从仪表内部的 00 08 寄存器地址开始写数据
00 01	寄存器数,1个字(2个字节)
02	字节数,2个字节
64 01	写入的表的表 ID 及波特率
04 3F	CRC 校验

返回: 64 10 00 3F 00 01 38 30

表示返回设置成功